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Abstract. Hospitalists are medical doctors that specialize in the care of hospitalized
patients, a role that until recently belonged to primary care physicians. We develop an
operational model of hospitalist-patient interactions with rounding and responding service
modes, optimizing hospitalist caseload and case-mix to achieve the maximal reduction in
patient length of stay (LOS). We show that hospitalists are effective at reducing LOS for
patients with complex conditions, corroborating intuitive reasoning. However, the optimal
hospitalist case-mix also includes “simple” patients with few interventions and short LOS,
as they can effectively reduce discharge delays. This actionable insight is particularly sali-
ent for small community hospitals with simple, short-stay patients, where hospitalists may
be undervalued due to the prevailing belief that they are primarily effective for complex
patients. We conduct a comparative case study of a small community hospital and a large
academic hospital, drawing a stark contrast between the two in terms of ideal caseload and
patient coverage. Despite the fact that the academic hospital treats higher complexity
patients, hospitalists at the community hospital should actually have a lower caseload than
hospitalists at the academic hospital due to shorter stays in the community hospital. We
find that both hospitals are understaffed but for different reasons: the academic hospital
needs to staff more hospitalists to reduce the current caseload of its hospitalists, whereas
the community hospital needs to staff more hospitalists to expand its hospitalist coverage
to more patients. We estimate that these hospitals can save on average $1.5 million annu-
ally by implementing the optimal staffing policies.
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1. Introduction
Until the late 1990s, primary care physicians (PCPs)
managed all aspects of care for patients in the U.S.
healthcare system, ranging from preventive care to
the care of critically ill hospitalized patients (Wachter
and Goldman 1996). In the last few decades, medical
care has shifted to ambulatory settings, and many ill-
nesses that were once occasions for hospital admission
are now treated in an outpatient setting, while only
the most critical patients are hospitalized (Sox 1999).
As a result, PCPs now spend a larger fraction of their
time on outpatients, while inpatients require more
intensive care. These two trends have motivated a

substantial number of physician groups and hospitals
to introduce a new specialty called “hospital medi-
cine” that is dedicated to inpatient care (Meltzer
2001). Those who specialize in hospital medicine are
called hospitalists.

Wachter and Goldman (1996) first defined a hospi-
talist as a physician who dedicates at least 25% of his
or her practice to inpatient care. Today, most hospital-
ists work full-time with hospitalized patients. They
practice in many specialties, most commonly internal
medicine and family medicine (Glasheen et al. 2011).
According to Wachter and Goldman (2016), the number
of hospitalists is more than 50,000 and hospital
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medicine is the fastest-growing specialty in U.S.
healthcare history. As of 2016, about 75% of U.S.
hospitals have at least one hospitalist (Wachter and
Goldman 2016).

In the hospitalistmodel of care, when a patient is admit-
ted to a hospital, the PCP transfers responsibility for the
patient’s care to a hospitalist. As the attending physician,
hospitalists admit patients, coordinate specialists’ consul-
tations, oversee diagnostic needs, schedule procedures,
and generally accelerate patients’ progress toward dis-
charge (Molinari and Short 2001). Upon discharge,
responsibility for the patient’s care returns to the PCP.

A hospitalist provides service in two ways (Tipping
et al. 2010). Direct patient care services, which account
for about 20% of each shift, involve interactions with
patients, for example, visiting patients for diagnosis,
examination, and treatment, and providing discharge
instructions. Indirect patient care services, which
account for about 70% of each shift, include working
with electronic medical records (EMRs), reviewing
test results, documenting the treatment and discharge
notes, and communicating with other care providers.
The rest of each shift is spent on education, professio-
nal development, traveling within the hospital, and
other activities.

Studies in the clinical literature have demonstrated
the pros and cons of the hospitalist model. The hospi-
talist model can reduce costs and length of stay (LOS)
without adversely affecting quality outcomes (see Sec-
tion 3 for a full review of the relevant literature). This,
however, comes at an increased number of patient
hand-offs between PCPs and hospitalists, which could
potentially harm patients’ experience and outcomes.
Electronic medical records facilitate communication
and coordination between hospitalists and PCPs,
which has alleviated this issue (Kripalani et al. 2007).
Overall, the benefits of the hospitalist model seem to
outweigh its costs, as is evident in the rapid growth of
hospitalists in U.S. hospitals. As such, we focus on the
benefits of the hospitalist model, which have been
studied primarily from a clinical perspective. To the
best of our knowledge, this recent major change in
hospital care delivery has not been studied in the
operations management literature. Fundamental ques-
tions remain regarding how to implement the hospi-
talist model most effectively, especially surrounding
hospitalists’ caseload. In the 2018 Hospitalist Career
and Compensation Survey, 45% of hospitalists reported
a caseload of more than 17 patients (n � 522 hospital-
ists), which they believed to be excessive for opera-
tional efficiency (Today’s Hospitalist 2018). In a recent
commentary, Wachter (2014, p. 794), who is known as
the “father of hospitalist medicine,” asks why there
have been virtually no studies of hospitalist caseload.

To address these concerns, we aim to answer the
research question: What is the ideal hospitalist caseload?

We measure caseload as the volume of patients
attended by a hospitalist. Michtalik et al. (2013b) sug-
gest that the characteristics of different patient groups
such as complexity of care need to be included in case-
load analyses as well. Medical studies have shown
that patients with different conditions may benefit dif-
ferently from a hospitalist’s care (Kuo and Goodwin
2010). It is important to understand which patients
benefit most from a hospitalist’s care. Therefore, our
second research question is: What is the ideal hospitalist
case-mix? We define case-mix as the set of patient types
that are attended by a hospitalist.1

We seek a caseload and case-mix that will be most
effective in reducing average LOS by taking a system-
wide view of their impact on hospital operations. We
capture the impact of hospitalists on a patient’s LOS
via a model of non-value-added delay time that
occurs when patients need a physician’s intervention
to progress to their next stage of care. For example, a
patient may need a change of medication, an analysis
of a diagnostic image, or the development of dis-
charge instructions. Because a hospitalist is on-site, he
or she can reduce these delays by responding to
patients’ needs more quickly than a nonhospitalist.
We integrate this patient-level model into a system-
model to characterize the caseload and case-mix of a
hospitalist that achieve the greatest reduction in hos-
pital census or, equivalently in average LOS.

Figure 1 summarizes the key conceptual findings of
our analysis. Using the number of hospitalist interven-
tions as a proxy for clinical complexity, we find that
hospitalists are more operationally effective for patients
with shorter lengths of stay and/or more complex con-
ditions. In our numerical study of hospital inpatients
with 45 common diagnosis-related groups (DRGs), we
find that hospitalists are most effective on the most
complex DRGs. However, the optimal case-mix also
includes DRGs with short LOS and low complexity.
We also show that the optimal caseload (between 9 and

Figure 1. (Color online) Hospitalist Effectiveness in Terms of
LOS Reduction as a Function of Complexity and Length of
Stay
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11 patients in our case studies) is sensitive to the com-
plexity of patients’ conditions through the frequency by
which patients need hospitalist interventions. For exam-
ple, complex patients need more hospitalist interven-
tions than simple patients, but they also have longer
LOS. For operational efficiency, a hospitalist who cares
for complex and long-stay patients may need to have a
larger caseload than a hospitalist who cares for simple
and short-stay patients. The optimal caseload is also a
function of the hospitalist’s visit rate (i.e., the number of
patient visits per hour).

We further solve the model using data from two
partner hospitals in the United States that differ in
size, mission (academic or community), and patient
characteristics (complexity and LOS). We characterize
the optimal staffing for each hospital and estimate the
operational and financial improvement of adopting
the optimal staffing. We find that the optimal hospital-
ist case-mix includes patients with long-complex and
short-simple conditions at both hospitals; however,
despite the fact that the academic hospital treats
higher complexity patients, hospitalists at the com-
munity hospital should actually have a lower caseload
than hospitalists at the academic hospital due to
shorter stays in the community hospital. Although
this matches the current practice, we find that hospi-
talists are underloaded at the community hospital and
substantially overloaded at the academic hospital. We
find that both hospitals should increase their staffing
levels. This would benefit the community hospital
through speeding up the patient discharges, and bene-
fit the academic hospital through lowering the case-
load of their current hospitalists, allowing them to be
more effective in managing each treatment and reduc-
ing delays. We estimate that these hospitals can save
on average $1.5 million annually by implementing the
optimal staffing policies recommended by our model.

1.1. For Healthcare Industry Readers
Practice-oriented methods, results, and insights for
the hospitalist model of care can be found in Sections
2–4 and 7–8. In Section 2, we provide a high-level
discussion of our methods of analysis. Specifically, we
present our conceptual model of hospitalist work
routines and their modes of interaction with patients
and how it relates to practice. We further provide
narrative and quantitative descriptions of the specific
hospitals and hospital settings studied in our data-
driven analysis: Level 1 (large academic hospital) and
Level 3 (small community hospital). Section 3 relates
our hypotheses and results to the clinical literature on
the impact of hospitalist care on hospital cost and
quality (see Table 1), as well as the impact of caseload
and case-mix on hospitalists. Section 4 presents the
key findings of the paper as hypotheses (summarized

here) that are supported by the analyses in Sections
5–8.

Results: Our findings suggest that:
Case-mix: Hospitalists can most effectively reduce

length of stay by attending a mix of complex and sim-
ple patients.

Caseload: To most effectively reduce length of stay,
hospitalists’ caseloads should be adjusted to account
for case-mix, where a lower caseload is recommended
if case-mix includes more complex patients and/or
more patients with short lengths of stay.

Sections 5–6 present mathematical analysis to sup-
port our hypotheses, which can be skipped if the
primary interest lies in implication for management
practice. Toward this end, Section 7 uses the State
Inpatient Database (2015) to study the question of
optimal hospitalist case-mix selection in generality by
analyzing a large and heterogeneous set of DRGs. Sec-
tion 8 demonstrates the impact of applying our
insights on caseload through a detailed counterfactual
analysis of two specific hospitals, highlighting differ-
ences in how hospitalists should be deployed in a
large academic hospital versus a small community
hospital. A key finding is that hospitalists may be
more effective in the large hospital by reducing case-
load by reducing coverage (not all patients attended
by a hospitalist). In contrast, the community hospital
may extract significant cost savings by increasing hos-
pitalist coverage through hiring more hospitalists and
increasing each hospitalist’s caseload.

2. Case Study Context
As part of this research, we conducted multiple site
visits at and obtained data from a large academic hos-
pital and a small community hospital in the U.S. Mid-
west. “Academic Hospital” has about 600 staffed beds
and serves over 30,000 patients annually. Inpatients
are attended by either a hospitalist or a family physi-
cian affiliated with their primary care practice. Each
hospitalist is localized to a medical or a surgical floor;
that is, he or she primarily sees medical or surgical
patients. In spite of this difference, the workflow of
the hospitalists is similar in both floors. We focus on
hospitalists who primarily see patients with medical
conditions. During the day shift from 7 a.m. to 7 p.m.,
nine hospitalists are on duty in the medical floors.
Each hospitalist manages the care of 15 patients on
average. Our practicing hospitalist coauthors helped
develop the workflow map of a hospitalist shown in
Figure 2. Hospitalists start their day by rounding on
their patients, meaning that they visit their patients
one after another. Each patient visit takes on average
30 minutes, including on average 10 minutes that are
spent inside the patient’s room for medical assessment,
and on average 20 minutes that are spent outside of

Kamalahmadi et al.: Operational Impact of Hospitalist Caseload and Case-Mix
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the patient’s room documenting the patient’s progress
in the EMR system, and coordinating his or her care
with nurses and other providers. Hospitalists at this
hospital typically finish visiting all their patients by
about 2:30 p.m., after which they respond to nurses’
and patients’ requests as needed while spending most
of their time on computer interactions, communication,
teaching, and professional development. Hospitalists are

also responsible for admissions and discharges. Dur-
ing the night shift from 7 p.m. to 7 a.m., two hospital-
ists provide emergency coverage and admit new
patients who arrive overnight (these admissions are
distributed among the day hospitalists the next morn-
ing). Except in emergency situations, the night hospi-
talists do not examine existing patients, most of
whom are asleep. Because of this difference, we focus

Table 1. Literature Review of Medical Studies

Outcomes for hospitalists’ patients

Study Clinical setting Hospitalization cost LOS Mortality Readmission

Palmer et al.
(2001)

Patients cared for by hospitalists, generalists,
and specialists at West Virginia University
Hospitals

↓ ↓ — —

Lindenauer
et al. (2002)

Heart failure cases cared for by hospitalists
and general internists at a hospital in
Massachusetts

— ↓ N/A N/A

Phy et al.
(2005)

Hip fracture patients cared for by hospitalists
and standard groups

N/A ↓ — —

Roy et al.
(2006)

Hip fracture admissions cared for by
hospitalists or nonhospitalists at a
community medical center

↓ ↓ N/A N/A

Lindenauer
et al. (2007)

76,926 patients cared for by hospitalists,
general internists, and family physicians, at
45 hospitals

↓ ↓ — —

Southern et al.
(2007)

Patients cared for by hospitalist and
nonhospitalist teams at Weiler Hospital

N/A ↓ — —

Roytman et al.
(2008)

Heart failure patients cared for by hospitalists,
cardiologists, general internists, and family
practitioners at a community hospital

↓ ↓ — —

Kuo and
Goodwin
(2010)

58,125 admissions by hospitalists and
nonhospitalists at 454 hospitals

↓ ↓ — N/A

Howrey et al.
(2011)

10,884 stroke patients attended by hospitalists
or nonhospitalists

N/A ↓ — ↑

Yousefi and
Chong (2013)

34,524 admissions to LH Oshawa, Lakeridge
Health, Canada, attended by family
physicians, internal medicine subspecialists,
or hospitalists

N/A ↓ ↓ ↓

Stevens et al.
(2017)

560,561 admissions cared for by hospitalists,
PCPs, or generalists

N/A ↓ — —

Note. ↓ or ↑ indicates a statistically significant difference for hospitalists’ patients in the specified direction;— indicates no difference, and N/A
indicates outcomewas not studied.

Figure 2. Day-Shift Hospitalists’Workflow in Academic Hospital

Shift starts

Rounding mode Responding mode

Daily patient rounds on 15 patients:

• Visiting patients
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• Coordination
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only on the day shift. In the academic hospital, man-
agement’s goal is for most, if not all, general medical
patients to be attended by a hospitalist.

“Community Hospital” has fewer than 100 staffed
beds and serves around 7,000 patients annually. Inpa-
tients are attended by either a hospitalist, a specialist
(e.g., surgeon, cardiologist), or their own primary care
physician. During the day shift, three hospitalists are
on duty. Each hospitalist manages the care of seven
patients on average. Their main care responsibilities
are similar to those of the academic hospital (except
that they do not have teaching responsibilities), but
hospitalists only attend a small fraction of the patients.
Moreover, hospitalists may attend a mix of medical
and surgical patients at the same time due to the lower
patient volume.

Although neither hospital has specific rules for
assigning patients to hospitalists or nonhospitalists,
hospitalists tend to attend more complex patients in
both hospitals. Some of the most common conditions
seen by hospitalists at these hospitals are septicemia,
intracranial hemorrhage, heart failure, renal failure,
gastrointestinal hemorrhage, diabetes, cellulitis, and
simple pneumonia.

The difference in the total volume of patients
attended by hospitalists and the caseload of each hos-
pitalist between these two hospitals highlights the
importance of our research questions regarding the
ideal hospitalist caseload and case-mix, and adds a
third research question: What portion of the overall patient
population should be attended by hospitalists? We use the
information that we obtained during our site visits and
interviews to inform our model of hospitalist work
modes in Sections 5–6. In Section 8, we use the data
from these hospitals to parameterize our model and
evaluate the third research question.

3. Literature Review
In this section, we review the clinical literature on hos-
pitalist outcomes and caseload, and then we review
the relevant operations management (OM) literature
on staffing in healthcare systems.

3.1. Hospitalist Outcomes in the
Clinical Literature

Many empirical studies have compared the outcomes
of patients who are attended by hospitalists with
patients who are attended by a nonhospitalist (e.g., a
PCP). Table 1 summarizes the findings of these stud-
ies, showing that the hospitalist model is broadly
associated with lower cost and LOS, and insignificant
differences in mortality and readmissions. In a sys-
tematic review, White and Glazier (2011) report that
hospitalists’ patients had shorter LOS and lower costs

with comparable quality outcomes in 70% of the stud-
ies (n � 65 studies). Using meta-analysis, Rachoin et al.
(2012) estimate that hospitalists’ patients have a mean
LOS that is 0.44 days shorter than nonhospitalists’
patients. The extent of LOS reduction depends on
patients’ conditions. Southern et al. (2007) find that
reduction in LOS was greatest for patients requiring
close clinical monitoring and for those requiring com-
plex discharge planning. Kuo and Goodwin (2010)
find that reduction in LOS was greatest in older, com-
plicated, nonsurgical patients.

These findings motivate us to ask why a hospitalist
may reduce LOS for some types of patients and not
for others. The answer is not straightforward, and
because the impact of the hospitalist model is largely
in operational outcomes, it is important to study it
from an OM perspective.

3.2. Hospitalist Caseload
In a recent survey, 40% of hospitalists report unsafe
caseload at least monthly (n � 506 hospitalists; Mich-
talik et al. 2013a). Hospitalists report that excess case-
load prevents them from fully discussing treatment
options, leads to unnecessary laboratory tests, delays
admissions or discharges, and worsens patient satis-
faction, though there are few studies in the literature
quantifying the effects of caseload on hospitalists.
Lurie and Wachter (1999) propose a very simple
model to determine the number of hospitalists needed
to provide care at a hospital by fixing the hospitalist
caseload at 10 patients per hospitalist and then using
the average annual census to calculate the number of
needed hospitalists. Elliott et al. (2014) study the
effects of caseload on the quality and efficiency of care
provided by hospitalists. The authors conclude that
increases in hospitalist caseload are associated with
clinically meaningful increases in LOS and cost, and
they report that LOS increases exponentially as case-
load increases above approximately 15 patients. Respond-
ing to Elliott et al. (2014), Wachter (2014) questions why
there have been virtually no other studies about hospi-
talist caseload. Michtalik et al. (2013b) propose that
patient complexity should also be considered in deter-
mining hospitalist caseload. Our paper contributes to
this body of literature on hospitalist caseload and effi-
cacy by providing an analytical model of their work-
flow process and using it to study the impacts of hospi-
talist caseload and case-mix on operational outcomes.

3.3. Healthcare Staffing in
Operations Management

Staffing decisions in medical facilities have been
studied extensively in operations management. In the
outpatient setting, research focuses on panel size and
design, and appointment scheduling (Green and Savin
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2008, Bavafa et al. 2013, Ozen and Balasubramanian
2013, Liu and Ziya 2014, Zacharias and Armony 2017).
The key trade-off in characterizing the optimal panel
size is as follows: if the panel is too large, then patients
have to wait for a long time to get an appointment. If
the panel is too small, then waiting times would be
short, but the overall coverage would be low. This
trade-off is common in many other settings such as
call-centers (see Gans et al. 2003). We apply a similar
trade-off in the inpatient setting, where service times
are much longer. In contrast to outpatient and call-
center models, where the server serves one customer at
a time, we study the case where multiple patients
receive care from the same provider simultaneously. In
the inpatient setting, many have studied staffing of
nurses and other providers (Wright et al. 2006, de
Véricourt and Jennings 2011, He et al. 2012, Green et al.
2013, Wang and Gupta 2014). To the best of our knowl-
edge, no research in operations management has ana-
lyzed staffing or panel design for hospitalists, an area
that has some unique operational characteristics rela-
tive to other service and healthcare providers.

A key feature of hospitalists’ jobs is repeated inter-
actions with patients. Recent studies have modeled
this kind of repeated interactions in service systems.
De Véricourt and Jennings (2011) formulate a closed
queueing model to determine efficient staffing policies
in a nursing home where patients alternate between
needing assistance and not. Yankovic and Green
(2011) develop a finite-source queueing model to opti-
mize nursing levels where the demand for nursing
care comes from patient arrival and departure as well
as patients’ requests during their stays. Yom-Tov and
Mandelbaum (2014) use an Erlang-R model to opti-
mize staffing when patients alternate between a
service and a delay phase. Dobson et al. (2013) study
prioritization of customers that visit multiple stations
during service. Chan et al. (2014) model provider-
controlled service rate where changing the service rate
impacts the likelihood of a customer requiring
rework. Campello et al. (2016) study workload of case
managers who are assigned to multiple homogeneous
customers and interact with them repeatedly. Of these
studies, the three that are most conceptually similar to
our work are de Véricourt and Jennings (2011), Yan-
kovic and Green (2011), and Campello et al. (2016).
Our work differs in two crucial ways from these stud-
ies. First, hospitalists typically use two different
modes of interactions with patients: rounds and
responding. These studies do not model rounds, but
they do bear some similarities to our responding
model. A main difference in de Véricourt and
Jennings (2011) and Yankovic and Green (2011) is that
any available nurse can intervene when patients
require assistance. In contrast, we model a situation in
which hospitalists attend specific patients. In this

way, we are more similar to Campello et al. (2016);
however, they specify a predefined maximum load
and assignment rule. In contrast, we endogenize the
caseload as a decision. We further integrate rounding
and responding in a rounding-responding model that
captures the true hospitalist practice and differs from
other models in the literature. Another key feature of
our study is heterogeneity of patient care complexity,
which is not considered in any of these studies.

To the best of our knowledge, the research with the
closest similarity to our model of rounds is by Chan
et al. (2016) and Dong and Perry (2020). They propose
queuing models for patient flow dynamics where
patients must be inspected before discharge. Chan
et al. (2016) analyze the effects of number and timing
of inspections on the queue length. Dong and Perry
(2020) assume that inspections take place at a specific
time during the day and discharge delays are con-
stant. They quantify the effect of the discharge policy
on bed utilization and throughput. Shi et al. (2015)
also model inpatient LOS while assuming that dis-
charges happen at predetermined times during the
day, and they investigate the effect of different dis-
charge policies on patients’ waiting time. Our study
has two main differences from these studies: first, we
study the case where patients require repeated inter-
ventions and delays are not limited to discharge; and
second, we endogenize the timing of interventions as
a function of provider caseload. We also assume that
delays are a function of the inspections, which are a
function of caseload.

4. Hypothesis Development
Based on the clinical and operations management
(OM) literature, we develop hypotheses regarding the
ideal hospitalist case-mix and caseload that will be
most effective in reducing average length of stay
(LOS).

4.1. Case-Mix
Medical studies have reported that hospitalist care is
associated with a reduction in patients’ LOS, and the
largest reduction is achieved for patients with com-
plex conditions (see Section 3.1). For example, South-
ern et al. (2007) find that sepsis patients attended by a
hospitalist had on average 3.7 days shorter LOS than
similar patients attended by nonhospitalists. Sepsis is
a complex condition that requires long hospitaliza-
tion, close monitoring, and careful discharge plan-
ning. Other conditions that experienced large LOS
reductions were congestive heart failure, stroke,
asthma, and pneumonia (Southern et al. 2007). It is
conjectured that the more complex patients require
closer monitoring and regular intervention as the doc-
tor works to manage evolving health condition(s).
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This may require ordering multiple tests, coordinating
procedures, and developing and refining treatment
plans. Intuitively, on-site hospitalists, due to physical
proximity and the singular focus on hospitalized
patients, can make these adjustments more rapidly,
reducing delays to recovery and treatment progress
due to faster response times.

On the other hand, patients with few complications
tend to have short LOS and are ready for discharge
quickly. Therefore, discharge delay has a proportion-
ally larger impact on LOS. Since these patients have a
higher throughput rate by turning over more quickly,
small reductions over a larger volume of patients may
have a greater aggregate benefit than larger reduc-
tions over fewer (longer staying) patients. A hospital-
ist attending these patients would ensure timely
access to care for more patients and/or reduce conges-
tion in inpatient units (Powell et al. 2012), creating a
less stressful work environment for the healthcare
personnel (Kuntz et al. 2015) and a safer environment
for patients (Trzeciak and Rivers 2003, Sprivulis et al.
2006). Hospitalists are in the hospital and can substan-
tially reduce discharge delays (Palmer et al. 2001), as
well as facilitate the aforementioned benefits.

In summary, hospitalists may reduce LOS by more
rapidly moving the care of a patient forward, with
more opportunities presented in more complex
patients, or by minimizing the time between discharge
readiness and discharge. Hence, we propose the fol-
lowing two hypotheses for the hospitalists’ ideal case-
mix:

Hypothesis 1a. Holding caseload constant, hospitalists
are more effective in reducing average LOS when attending
patients with more complex conditions.

Hypothesis 1b. Holding caseload constant, hospitalists
are more effective in reducing average LOS when attending
patients with shorter LOS.

Note that complexity of care and LOS are highly
correlated. Therefore, Hypotheses 1a and 1b can be
considered to be competing hypotheses.

4.2. Caseload
When a worker serves multiple customers simultane-
ously, his or her caseload, or the average number of
customers in simultaneous service, affects the out-
comes of the service for each customer (Luo and
Zhang 2013, Tan and Netessine 2014). A hospitalist
cares for multiple patients simultaneously. Each addi-
tional patient consumes a portion of the hospitalist’s
limited time and capacity, making him or her less
responsive to the needs of the other patients, which
increases delays. Elliott et al. (2014) find that LOS
increases exponentially as hospitalist caseload increases.
A smaller caseload allows the hospitalist to be more

responsive, but it limits the system-level impact of hospi-
talists because fewer patients can be attended by the
same number of hospitalists. Therefore, the optimal case-
load should balance patient waiting time and coverage.

Empirical evidence from our observations indicates
the hospitalists’ caseload can vary substantially across
hospitals. We saw this in our case study hospitals. At
Academic Hospital, where most patients have com-
plex conditions with long LOS, each hospitalist cares
for 15 patients, whereas at Community Hospital,
where most patients have simple conditions and short
LOS, each hospitalist cares for seven patients. This
suggests that there may be an interaction between
hospitalist case-mix and caseload. On the one hand,
patients with more complex conditions tend to need
more hospitalist interventions. If their hospitalist has
a large caseload, then they will experience prolonged
delays at multiple occasions during hospitalization.
On the other hand, patients with simpler conditions
often recover more quickly and turn over faster. If
their hospitalist has a large caseload, then they will
experience unnecessarily long discharge delays. Since
complexity and LOS are correlated, we propose the
following two complementary hypotheses.

Hypothesis 2. Holding patients’ average LOS constant,
as complexity of conditions in the case-mix increases, hospi-
talist ideal caseload decreases.

Hypothesis 3. Holding patients’ average complexity con-
stant, as LOS of conditions in the case-mix decreases, hospi-
talist ideal caseload decreases.

5. The Model
In this section, we formulate a model to determine the
steady-state caseload and case-mix per hospitalist that
minimizes average hospital census. When arrivals are
exogenous, minimizing the average census is equiva-
lent to minimizing the average length of stay (LOS).
Unnecessarily long LOS is costly for the hospital and
undesirable for the patient. First, we propose a general
model without imposing any structure on patients’
LOS and patient-provider interactions. We then
develop a multiphase model of patients’ LOS, as well
as a model of patient-provider interactions with
rounding and responding service modes to endogen-
ize the effect of hospitalist caseload on patients’ LOS.

5.1. Caseload and Case-Mix Optimization Model
We consider a hospital scheduling n hospitalists per
shift. There are I types of patients. Type i ∈ {1, 2, : : : , I}
patients arrive at an average rate of λi per unit time. A
patient’s LOS has two components: service require-
ment and delay. Service requirement is the value-
added time that the patient must stay in the hospital
for clinical care and recovery before discharge. The
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service requirement of each type i patient is independ-
ent and identically distributed according to a random
variable Ψi with expected value Si � E[Ψi]. At certain
points during the treatment and recovery process, the
patient requires an intervention by the attending
physician. Since the attending physician has more
than one patient, the patient may experience a ran-
dom non-value-added delay waiting for the physi-
cian. The delay time depends on whether the patient
is attended by a hospitalist or not. If a patient is
attended by a hospitalist, then his or her delay time
depends on the hospitalist’s caseload. Otherwise, the
delay time depends on the time between two consecu-
tive visits by the nonhospitalist. The nonhospitalist
can be the patient’s PCP or a specialist (e.g., cardiolo-
gist, neurologist). We assume that there are sufficiently
many nonhospitalists or their visits are sufficiently
infrequent that the nonhospitalist visit interval is inde-
pendent of the total nonhospitalist workload. This is
reasonable since many nonhospitalists such as PCPs or
specialists spend most of their time outside the
hospital.

Let r be the hospitalist caseload, defined as the aver-
age number of patients per hospitalist. The decision
variables are ri, i ∈ {1, 2, : : : , I}, which denote the aver-
age number of type i patients per hospitalist and
describe the hospitalist case-mix. The caseload of each
hospitalist (the patient-to-hospitalist “ratio”) is then
given by r � ∑I

i�1r
i. We assume identical caseload and

case-mix for hospitalists, but relax this assumption in
Appendix B.1 in the e-companion. We use an average-
case model, so the decision variables represent the
steady-state caseload and case-mix per hospitalist. Hos-
pitalists’ caseload and case-mix do change throughout
the day, so our results should be interpreted as the
“ideal” caseload and case-mix. LetDi

H(r) be the expected
delay for a type i patient attended by a hospitalist having
caseload r, which is an increasing function of r. Let SiH(r)
be the expected LOS of such a patient. Finally, let Di

N
and SiN be the expected delay and the expected LOS of a
type i patient attended by a nonhospitalist. Then we
have SiH(r) � Si +Di

H(r) and SiN � Si +Di
N:

Arrivals of type i patients occur with rate of λi and
are divided between hospitalists and nonhospitalists
with rates of λi

H and λi
N, respectively, such that

λi
H +λi

N � λi. Using Little’s law, the average census of
type i patients in the hospital is λi

HS
i
H(r) +λi

NS
i
N, and

consequently the average hospital census is
∑I

i�1
(
λi
H

SiH(r) +λi
NS

i
N
)
. We formulate the following optimiza-

tion model to determine hospitalist caseload and
case-mix that minimizes the average hospital census:

min
λi
H,λi

N, ri, i∈{1,2, : : : , I}

∑I
i�1

(
λi
HS

i
H(r) +λi

NS
i
N

)
(1)

subject to λi
H +λi

N � λi, ∀i ∈ {1, 2, : : : , I} (2)

nri � λi
HS

i
H(r), ∀i ∈ {1, 2, : : : , I}

ri,λi
H,λ

i
N ≥ 0, ∀i ∈ {1, 2, : : : , I}: (3)

Objective function (1) minimizes the average hospital
census, which is equivalent to minimizing the average
LOS. Constraints (2) divide arrivals between hospital-
ists and nonhospitalists. Constraints (3) enforce Lit-
tle’s law: the average number of type i patients
assigned to n hospitalists equals their average arrival
rate times their average LOS. If all of the patients of a
given type i are attended by hospitalists, then λi

H � λi

in (3), and each hospitalist gets λiSiH(r)=n patients
from that type. Let ωi(r) � λiSiH(r)=n. A feasible solu-
tion to our defined problem satisfies ri ≤ ωi(r),
∀i ∈ {1, 2, : : : , I}. We call ri ≤ ωi(r) the demand constraint
for type i.

See Table EC.1 in Appendix A of the e-companion
for a summary of notations used in this paper.

Next, we propose a model of patients’ LOS to char-
acterize service requirements. We then develop a
model of patient-provider interactions to characterize
delays.

5.2. Modeling Length of Stay
Following Faddy et al. (2009), we model the service
requirement of a patient as a continuous-time Markov
chain (CTMC) with states (known as phases) such that
after spending time in each phase, a patient either pro-
gresses to the next phase or moves to an absorbing
state that corresponds to discharge. Given this struc-
ture, the service requirement follows a Coxian phase-
type distribution (Marshall and McClean 2004, Payne
et al. 2011). Figure 3 depicts the general form of the
CTMC, where the time spent in phase j is exponen-
tially distributed with parameter µj and each patient
progresses from phase j to phase j + 1 with probability
pj or to the absorbing state with probability qj � 1− pj.
In Appendix C.1 in the e-companion, we use real
patient data from a partner hospital to validate this
model. The expected total service requirement for a
patient with J phases is S � E[Ψ] � 1=µ1 + p1(1=µ2 +
p2(1=µ3 + : : :pJ−1(1=µJ))) �

∑J
j�1Pj=µj, where P1 � 1

and Pj � p1p2 : : :pj−1 is the probability of visiting phase

j for j > 1. Observe that
∑J

j�1Pj is the expected number
of phases. In this study, a higher number of phases
indicates a more complex plan of care. In later sec-
tions, we will add the superscript i to the parameters
to describe the LOS of type i patients. For patient type
i, Ji describes the number of phases, µi

j describes the
service rate in phase j, pij describes the transition
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probability from phase j to j + 1, and Pi
j describes the

visit probability of phase j.
We model non-value-added delay by assuming that

the patient requires intervention from the attending
physician at the end of each phase (prior to the transi-
tion). This assumption is based on interviews with
several hospitalists who stated that, as the coordinator
of patient care, their interventions are required to
drive patient treatment and recovery forward. Exam-
ples of interventions are when the patient needs a
medication change to move to the next state of inpa-
tient recovery, or when the physician needs to process
discharge paperwork for the patient to move to the
absorbing state. Since the length of each phase is sto-
chastic, and the physician attends multiple patients
(hospitalists) or is not always on-site (nonhospitalists),
patients experience delays at the end of each phase.
These delays depend on the way the physician inter-
acts with patients, and the number of patients he or
she is treating (hospitalists) or the frequency of his or
her hospital visits (nonhospitalists).

5.3. Modeling Patient-Provider Interactions
We interviewed and shadowed several hospitalists at
work to develop a better contextual grounding about
their workflow. Hospitalists typically start their day
by visiting all of their patients one after another in a
round-robin fashion, which we call the rounding mode
or “rounds” (Figure 2). During rounds, hospitalists
assess and document patients’ progress, and coordi-
nate necessary interventions with other providers.
Hospitalists with a heavy caseload may spend nearly
their entire shift on rounds. When rounds are finished,
hospitalists switch to a different work pattern that we
call responding (Figure 2). In this mode, hospitalists
spend their time on indirect care services (such as
working on EMRs and communicating with other
providers) and provide direct care to patients as needs
arise. We propose a model of patient-provider interac-
tions with rounding and responding, where the hospi-
talist caseload determines not only the delays for
direct patient care within each mode, but also the
amount of time spent on rounding versus responding.
In contrast to hospitalists, nonhospitalists are not

always on-site at the hospital, and most commonly
function in rounding mode only. Therefore, we model
the interactions between nonhospitalists and patients
only in rounding mode.

First, consider the case for hospitalists. Define π(r) ∈
[0, 1] as the fraction of time a hospitalist spends
rounding when his or her caseload is r. The hospitalist
then spends 1−π(r) responding. The expected total
LOS of a patient can then be expressed as the
weighted combination of the expected LOS based on
the fraction of time spent in each mode (since each
phase is exponentially distributed, we can apply
PASTA and observe that the probability a phase ends
during the rounding mode is π(r)). Let SRND

H (r) and
SRSPH (r) denote the expected LOS of a patient attended
by a hospitalist with caseload r when π(r) � 1 and
π(r) � 0, respectively. Then,

SH(r) � π(r)SRND
H (r) + (1−π(r))SRSPH (r): (4)

The expected LOS for a patient attended by a nonho-
spitalist SN is a special case of SRND

H (r), where delays
depend on the visit frequency of nonhospitalists, not
their caseload. We model the expected LOS in the
pure rounding mode SRND

H (r) and SN in Section 5.3.1.
We then model the expected LOS in the pure respond-
ing mode SRSPH (r) in Section 5.3.2. We characterize π(r)
and SH(r) in Section 5.3.3.

5.3.1. Rounding Service Mode. In this section, we
model the interactions of patients and providers in the
pure rounding mode to characterize SRND

H (r) and SN.
Rounding is the practice of visiting patients in a
sequential manner. First, consider the case for hospi-
talists. Let γ be the hospitalist visit rate, that is,
the number of patients visited per time unit. The aver-
age time between visits to successive patients is there-
fore γ−1. This interval includes the time spent on
direct care during the encounter and the time spent
on some of the tasks related to indirect care (e.g., doc-
umentation, consultation) that happen immediately
after each encounter. For analytical tractability, we
assume that γ is deterministic. In a time-motion study,
Kara et al. (2019) report CV (coefficient of variation) �
0:3 for the duration of hospitalist-patient encounters,

Figure 3. CTMCRepresenting a J-phase Coxian Phase-Type Distribution

…

exp( ) exp( ) exp( )

Absorbing State (Discharge)

Phase Phase 1 Phase 2
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suggesting that visit lengths have low variability.
Hence, treating them as deterministic is a reasonable
approximation to attain tractability. A hospitalist with
caseload r who works in pure rounding mode revisits
each patient once every r=γ time units, as depicted in
Figure 4. A large caseload increases the time between
visits of each patient and prolongs delays. Although a
smaller caseload results in more frequent visits, it also
means that the hospitalist attends fewer patients, lim-
iting his or her system-level impact.

Lemma 1 (Expected LOS: Rounding Mode). The
expected LOS in the rounding mode for a type i patient
with Ji phases of care, who is attended by a hospitalist with
caseload r is:

SRND,i
H (r) �∑Ji

j�1
Pi
j

r=γ

1− e−µ
i
jr=γ

( )
: (5)

The proof of Lemma 1 and all subsequent analytical
results is given in Appendix D of the e-companion.

We remark that SRND,i
H (r) is convex and increasing in r.

Now, consider the case for nonhospitalists. Let ξ be
the nonhospitalist visit rate; that is, a nonhospitalist
visits each patient once every 1=ξ time units. The
expected LOS for a nonhospitalist’s patient would be

SiN � SRND,i
H

γ

ξ

( )
�∑Ji

j�1
Pi
j

1=ξ

1− e−µ
i
j=ξ

( )
:

This also implies that r ≤ γ=ξ.

5.3.2. Responding Service Mode. In this section, we
develop a queueing model for the responding mode
of hospitalist-patient interactions to characterize SRSPH (r).
We model the responding mode for a single hospital-
ist using a closed queueing network with two nodes
and r patients as depicted in Figure 5. A patient with J
phases spends a random amount of time distributed
exponentially with parameter µj for phase j in Node 1

recovering without the hospitalist’s presence, and
then moves to Node 2, where he or she requires a visit
from the hospitalist. Consistent with the assumptions
necessary to analyze a closed Jackson network, we
assume that the hospitalist visit time is independent
and identically distributed according to an exponen-
tial distribution with rate γ. After each intervention,
the patient returns to Node 1 to begin the next phase
of care until he or she is eventually discharged. At
discharge, we assume the bed is immediately filled by
another patient of the same type; this captures the
steady state behavior of case-mix similar to the
rounding model. Since each patient is assigned to a
single hospitalist, Node 2 functions as a single server
station. One modeling challenge in the responding
mode is that a patient who enters the queue waits
until the hospitalist visits those who are in the queue
ahead of him or her. Therefore, the delay experienced
by each patient here depends on the hospitalist’s
entire case-mix, not just total caseload.

We begin by analyzing patients who have only one
exponentially distributed phase and only experience
discharge delay. We first analyze the model with only
a single patient type. The state of the system is (x1, x2),
where xk is the number of patients at Node k, and x1 +
x2 � r as depicted in Figure 5. Since all patients have
identically distributed service requirements, the queue-
ing network is a Jackson network, which has a product-
form solution.

Lemma 2 (Expected LOS: Responding Mode, Single
Phase, Single Patient Type). The expected LOS of a
patient with a single phase in the responding mode with a
single patient type is

SRSPH (r) � 1
µ
+ (r − 1) 1

γ
− 1

γ
+ 1
µ

( )
Γ(r − 1,γ=µ)
Γ(r,γ=µ)

( )
: (6)

Although SRSPH (r) in (6) is derived from a model where
r is discrete, it happens to be a continuous function of

Figure 4. Hospitalist-Patient Interactions via Rounds for Example Patient with Two Phases

Delay Delay

Time units Time units

Service requirement of 

phase 1

Time units

Length of stay

Visit Visit Visit Visit

Admission Discharge

Service requirement 

of phase 2
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r, so we will use (6) to interpolate for average values
of r that fall between two integers.

The closed queueing network with multiple patient
types or patients with multiple phases does not permit
an analytical solution, so we present an approximation.

Approximation 1 (Average Service-Rate Approximation).
For the type i patients, replace the service rate of each
phase, µi

j, by the weighted average service rate µ̄i,
defined as

µ̄i � expected number of phases
expected total service requirement

�
∑Ji

j�1P
i
j∑Ji

j�1
Pi
j

µi
j

:

Then approximate the expected LOS as follows:

SRSP,iH (r) � 1
µ̄i + (r − 1) 1

γ
− 1

γ
+ 1
µ̄i

( )
Γ(r − 1,γ=µ̄i)
Γ(r,γ=µ̄i)

( )( )∑Ji
j�1

Pi
j:

(7)

Note that µ̄i is the average of the service rate of differ-
ent phases, weighted by the probability of visiting each
phase. In (7), we multiply the expected length of a sin-
gle phase and delay with rate µ̄i with the expected
number of phases

∑Ji
j�1P

i
j. Assuming a single patient

type, if service rates are equal in every phase, then (7)
gives the exact expected LOS. Otherwise, the accuracy
of this approximation depends on the variability of
service rates around µ̄i. We use the same approxima-
tion for the case with multiple patient types. In other
words, for each patient type, we assume that all of the
other patients cared for by the same hospitalist are of
their type. For example, suppose a hospitalist is attend-
ing 10 patients of type 1 and five patients of type 2. In
calculating the expected LOS of type 1 patients, we
assume that all 15 patients are type 1, and in calculating
the expected LOS of type 2 patients, we assume that
all 15 patients are type 2. In Appendix C.2 in the
e-companion, we use a discrete-event simulator to
show that (7) closely approximates the expected LOS in
the pure responding mode.

5.3.3. Rounding-Responding Service Mode. Combin-
ing the rounding and responding models, we capture
the reality of hospitalist-patient interactions, where hos-
pitalists typically spend the first part of their shifts
rounding and the remainder responding. Let π(r) � r=γ,

which corresponds to the case where hospitalists switch
to responding mode after rounding on all their patients
once. We can now use (4) to calculate the expected total
LOS of a patient. For example, with a single type of
patient with one phase, the expected LOS will be

SH(r) � r
γ

r
γ

1− e−µr=γ

( )

+ 1− r
γ

( )
1
µ
+ (r− 1) 1

γ
− 1

γ
+ 1
µ

( )
Γ(r− 1,γ=µ)
Γ(r,γ=µ)

( )( )
:

(8)

In Appendix C.2 in the e-companion, we use a discrete-
event simulator to show that this is a good approxima-
tion for the hybrid rounding-responding mode.

In (8), the hospitalist’s caseload impacts the expected
LOS in two different ways: (i) higher caseload prolongs
the time between visits in rounding mode and increases
waiting time in responding mode, leading to additional
delays, and (ii) higher caseload increases the amount of
time spent rounding, leading to indirect delays because
responding is a more efficient service mode. Because
the proportion of time spent in rounding mode
increases as there are more patients, for reasonable val-
ues of caseload (e.g., r ∈ [10, 20]), the behavior of
the rounding-responding model resembles that of the
rounding mode more closely. Therefore, many of the
analytical results that we will present using only
the rounding model in Section 6.2 are closely approxi-
mated in the rounding-responding model.

6. Caseload and Case-Mix Analysis
In this section, we first analyze the caseload and case-
mix model in the general form without imposing any
structure on patients’ LOS and patient-provider inter-
actions. We then extend these analyses to the case
where patient-provider interactions are modeled in
the rounding service mode. The full rounding-responding
model is not analytically tractable. In later sections,
we test the rounding-responding model numerically
and show that the insights derived from the analytical
results in this section hold numerically in the full
rounding-responding model.

Figure 5. Closed Queueing Network with TwoNodes and r Patients

2 patients1 patients
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6.1. Analysis of the General Model
Substituting (2) and (3) in (1) yields

min
ri, i∈{1, 2, : : : , I}

∑I
i�1

λiSiN +∑I
i�1

nri 1 − SiN
SiH(r)

( )( )
, (9)

which is a function of ri only. In (9),
∑I

i�1λ
iSiN is the

average hospital census in the absence of hospitalists,
which does not depend on the decision variables ri.
The remainder of the expression is the reduction in
hospital census due to the use of n hospitalists. Define
Ri(ri, r) � nri(1− SiN=S

i
H(r)) to be the change in hospital

census when each hospitalist has r patients, of which ri

are type i. Ri(ri, r) captures the trade-off between a
high and a low hospitalist caseload: when hospitalists
attend fewer patients, each patient’s LOS is reduced by
a larger amount (since SiH(r) is increasing in r), but the
effect is applied to those few patients. When hospital-
ists attend many patients, each patient’s benefit is less,
but it is aggregated over a greater number of patients.

We will show that under certain conditions, the
patient types can be ordered according to the extent to
which hospitalists reduce an individual patient’s LOS.
When this happens, addition of patient types into the
hospitalists’ case-mix should follow this ranking. First,
we prove that if there is sufficient demand from the
type of patient for whom hospitalists bring the great-
est individual reduction in LOS, then hospitalists
should only attend patients of that type.

Lemma 3 (Optimal Caseload and Case-Mix Without
Demand Constraints). Define the optimal caseload for a
hospitalist that only serves type I patients as r∗i � arg minr

Ri(r, r), ∀i ∈ {1, 2, : : : , I}. Further, define patient type [1],
the type that achieves the greatest census reduction at its
optimal caseload, as [1] � argmini∈{1,2,: : : ,I} Ri(r∗i , r∗i ). If
ω[1](r∗[1]) ≥ r∗[1], then the optimal hospitalist caseload is r∗[1],
of which all patients are type [1].

In Lemma 3, type [1] is the patient type that satisfies
S[1]N =S[1]H (r∗[1]) ≥ SiN=S

i
H(r∗i ), ∀i≠ [1] (in case of a tie, any

of the tied types can be chosen). The ratio of nonhospi-
talist LOS to hospitalist LOS is largest for type [1]
when the LOS reduction for each type i is evaluated at
its own optimal caseload r∗i .

When there is enough demand from this patient
type, it is the only type included in the case-mix.
When there is not sufficient demand from the highest-
ranked patient type to reach the optimal hospitalist
caseload, that is, ω[1](r∗[1]) < r∗[1], the solution is not as

straightforward in general. However, if we fix the
total caseload for each hospitalist, then we can charac-
terize the optimal case-mix as follows.

Lemma 4 (Optimal Case-Mix for a Fixed Caseload with
Demand Constraints). Given total caseload r, let [i]r �

arg maxi∉{[1]r,[2]r,: : : ,[i−1]r}S
i
N=S

i
H(r), where [i]r is the label

of the type that has the ith largest ratio of nonhospitalist to
hospitalist expected LOS given total caseload r. The optimal
case-mix is obtained by adding patients in label order (i.e.,
[1]r, [2]r,… ) until caseload r is reached.

For a fixed caseload, patient types should be added
to the hospitalist case-mix in decreasing ranked order
of nonhospitalist to hospitalist LOS ratio until case-
load r is achieved.

The results in this section were derived from the
most general form of the model without imposing any
structure on patients’ LOS and providers’ service
modes. We showed that the hospitalist case-mix should
include types with higher ratio of nonhospitalist to hos-
pitalist LOS. But which factors lead this ratio to be high
in practice? To answer this question, we need to impose
more structure on the patients’ LOS and on the interac-
tions between patients and physicians.

6.2. Analysis of the Model with Coxian LOS in
Rounding Service Mode

In this section, we analyze the model with the Coxian
LOS and in the pure rounding mode as described in
Section 5.3.1. We begin our analysis by considering a
special case of the main problem, where all patient
types have only one phase of care. We then extend
this analysis to the case with multiple phases of care.

6.2.1. Single Phase with Discharge Delay. In this sec-
tion, we consider a special case where all patient types
are “simple” in the sense of having only one phase,
which results in only one delay at the time of dis-
charge. The Coxian phase-type distribution with only
one phase is the exponential distribution. The
expected LOS of a type i patient attended by a hospi-
talist would be

SiH(r) �
r=γ

1 − e−µi(r=γ) :

Inserting the exponential LOS into the optimization
model in (9), we obtain

min
ri,i∈{1,2,:::,I}

∑I
i�1

λi=ξ

1−e−µi=ξ
+∑I

i�1
nri 1− γ=ξ

r

( )
1−e−µir=γ

1−e−µi=ξ

( )( )( ){ }
:

(10)

First, we expand on Lemma 4 and prove that the opti-
mal order by which patient types enter the hospitalist
case-mix is independent of the caseload and depends
solely on service rates.

Proposition 1 (Optimal Order of Types: Rounding Mode,
Single Phase). If all patient types have a service require-
ment with a single phase, then a patient type with a larger
service rate µi will have a larger ratio of expected nonhospi-
talist to hospitalist LOS for all caseloads r ∈ (0,γ=ξ).
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Proposition 1 suggests that for simple patients, the
“best” patient type for hospitalists’ operational effective-
ness is the type with the highest service rate (shortest
service requirement), which supports Hypothesis 1b.
Applying Lemma 3, we further obtain the following.

Proposition 2 (Best Patient Type and Caseload: Rounding
Mode, Single Phase). If there is ample demand for patient type
[1], that is, r∗[1] ≤ ω[1](r∗[1]), where [1] � argmaxi∈{1,2,: : : ,I}µi,
then the optimal case-mix of a hospitalist includes only type [1]
patients, and the optimal caseload is

r∗[1] �
γ

µ[1] ln
µ[1]=ξ

1− e−µ[1]=ξ

( )
: (11)

The optimal caseload for the best patient type is
increasing linearly in the hospitalist visit rate, decreas-
ing in the nonhospitalist visit rate, and decreasing in
the patient service rate. This last observation supports
Hypothesis 3. Complexity is held constant (at one
phase): as the patient’s service requirement decreases,
the ideal caseload decreases.

If the demand constraint for the best type becomes
binding, that is, ω[1](r∗[1]) < r∗[1], we can follow Proposi-
tion 1 and assign all of type [1] patients to hospitalists,
and then move on to the second best type, that is, the
type with the second largest service rate, [2]. In other
words, we set r[1] � ω[1](r) in (10), and solve it assum-
ing only the caseload of type [2] can vary. Once the
optimal caseload r∗ is derived, we check the demand
constraint for type [2]; if r∗[2] < ω[2](r∗), then r∗ is the
optimal caseload. Otherwise, we set r[2] � ω[2](r) in
(10), repeat the same procedure for type [3], and so
on. Proposition 3 generalizes this approach to all
patient types and proves optimality.

Proposition 3 (Optimal Caseload and Case-Mix: Round-
ing Mode, Single Phase). The optimization problem in (10)
can be divided into I single-variable subproblems, one of
which produces the optimal solution to the main problem.
In each subproblem i, we only include the best i types of
patients, that is, type [1], [2], . . . , [i]. We set
rj � ωj(r), ∀j ∈ {[1], [2], : : : , [i− 1]}, and r[i] � r−∑[i−1]

j�[1]ωj(r).
The ith subproblem becomes

min
r≥∑[i−1]

j�[1]ωj(r)
n
∑[i−1]
j�[1]

ωj(r)+λ[i]S[i]N +n

(
r−∑[i−1]

j�[1]
ωj(r)

)
1− S[i]N

S[i]H (r)

( )
:

(12)

The smallest i for which the demand constraint for type [i]
is not binding in the optimal caseload, that is, r∗[i] < ω[i](r∗),
produces the optimal caseload to the main problem. The
optimal case-mix is to add patient types sequentially in
decreasing order of service rates until the optimal caseload

is reached. If such i does not exist, then assign all patients
to hospitalists.

Our analysis in this section provides support for
two of our hypotheses in a special case where hospi-
talists only round and patients have a “simple” plan
of care. We found that, for a fixed caseload, hospital-
ists are more effective in reducing average LOS when
attending patients with shorter LOS, which supports
Hypothesis 1b, and as LOS becomes shorter, the
optimal caseload becomes smaller, which supports
Hypothesis 3. We further showed that a straightfor-
ward stacking procedure that adds patients sequen-
tially in decreasing order of service rates computes
the optimal caseload and case-mix. Next, we analyze
patients with multiple phases and interventions.

6.2.2. Multiple Phases and Interventions. Consider a
patient with multiple treatment phases captured by a
Coxian phase-type distribution. The expected LOS for
a patient attended by a hospitalist would be

SiH(r) �
∑J
j�1

Pi
j

r=γ

1 − e−µ
i
jr=γ

( )
:

We first apply Lemma 3 to determine which patient
type should be highest ranked when there is no
demand constraint, as follows.

Lemma 5 (Optimal Caseload: Rounding Mode, Multiple
Phases, Single Patient Type). The objective function (9) for
a single patient type with a J-phase Coxian LOS is strictly
convex in r, and r∗ is the solution to

∑J
j�1

Pj

1− e−µjr=γ

( )2
� ∑J

j�1

Pj=ξ

1− e−µj=ξ

( ) ∑J
j�1

Pjµje
−µjr=γ

(1− e−µjr=γ)2
( )

:

(13)

Although the solution to (13) cannot generally be writ-
ten in closed form, in the special case where phases
are identically distributed, r∗ � (γ=µ) ln ((µ=ξ)=(1− e−µ=ξ)),
which matches the optimal caseload for the single-
phase patients considered in Section 6.2.1. This special
case is illustrative in two ways. First, it provides the
intuition that the hospitalist’s optimal caseload may be
sensitive to complexity (as measured by number of phases)
primarily through the average phase length. Later, we
show that this intuition is generally supported in
numerical experiments with real data. Second, this
special case suggests that Approximation 1 can be
used to provide additional insights into the hospitalist
ideal caseload and case-mix. Recall that in Approxi-
mation 1 we replaced the service rate of each phase µj

by the average service rate µ̄, weighted according to
the probability of visiting each phase Pj. We can apply
the same approximation here, which would then lead
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to a heuristic caseload r̄ as

r̄ � γ

µ̄
ln

µ̄=ξ

1− e−µ̄=ξ

( )
:

Although this heuristic does not provide the exact
optimal solution, it simplifies the problem in a way
that allows us to develop additional intuition about
hospitalists’ operational effectiveness. Recall that in
Section 6.2.1 we found support for Hypotheses 1b
and 3: among patients with a single phase, for a fixed
caseload, hospitalists are more effective in reducing
average LOS when attending patients with shorter
LOS, and as LOS becomes shorter, the optimal case-
load becomes smaller. Approximation 1 suggests sim-
ilarly that among patients with multiple phases, for a fixed
caseload, hospitalists are more effective in reducing average
LOS when attending patients with shorter weighted average
phase length (larger µ̄), and as the average phase length
becomes shorter, the optimal caseload becomes smaller.

Two factors can lead to large µ̄ and thus a higher
ranking according to the average service rate heuristic:
short expected total service requirement and large
expected number of phases. A high number of phases
indicates a complex plan of care that requires many
interventions and introduces more potential delays.
Therefore, holding caseload constant, among patients
with similar total expected service requirement, a
hospitalist is more operationally effective when atten-
ding patients with more complex condition, supporting
Hypothesis 1a, and as complexity of conditions increases,
the ideal caseload decreases, supporting Hypothesis 2.
On the other hand, among conditions with similar
complexity, a hospitalist is more operationally effec-
tive when attending patients who have shorter serv-
ice requirement, supporting Hypothesis 1b, and as
service requirement decreases, the ideal caseload
decreases, supporting Hypothesis 3. Both cases imply
a shorter weighted average phase length, indicating
that a patient requires more frequent attention. In Sec-
tion 7, we show that patients with gastrointestinal
(G.I.) hemorrhage (mean LOS � 4.5 days, mean proce-
dures � 2.1) and patients with chest pain (mean LOS
� 2.1 days, mean procedures � 0.5), are both priori-
tized over patients with diabetes (mean LOS � 4.3
days, mean procedures � 0.5). G.I. hemorrhage
patients have a similar LOS as diabetes patients but
have on average four times the number of proce-
dures. Conversely, chest pain patients have a similar
average number of procedures as diabetes patients
but spend half as long in the hospital. The hospitalist
has more frequent opportunities to reduce delays
when attending either G.I. hemorrhage or chest pain
patients than when attending diabetes patients.

We evaluate the performance of the average service
rate heuristic in Appendix C.3 in the e-companion.

We prove a special case where ranking patient types
by µ̄ is optimal. For other cases, we run a number of
numerical experiments using real patient data that
show that ranking by µ̄ is suboptimal only when two
types have very similar µ̄’s, in which case the subopti-
mal ranking has minimal impact on the solution per-
formance because the two types are so similar. We
also show that the heuristic caseload is very close to
the actual optimal caseload. Approximation 1 is used
for tractability in our numerical studies in Sections 7
and 8.

In this section, we highlighted several insights for
the hospitalist’s rounding service mode when
patients’ service requirements are Coxian phase-type.
First, hospitalists are more effective in reducing delays
for patients with many procedures, which dovetails
with the generally held clinical belief that hospitalists
are more effective at managing the care of complex
patients and supports Hypothesis 1a. Second, among
patients of similar complexity, hospitalists are more
effective when their case-mix includes patients with
short service requirements, which supports Hypothesis
1b, and to our knowledge has no clinical counterpart.
Thus, to reduce hospital census and/or increase
throughput, a hospitalist’s case-mix should include
patients with complex plan of care and patients with
short LOS. Third, holding service requirements fixed,
as complexity of conditions increases, hospitalist ideal
caseload decreases, supporting Hypothesis 2; and hold-
ing complexity fixed, as LOS decreases, the ideal case-
load decreases, supporting Hypothesis 3.

7. Mixing It Up: The Evidence for a
Balanced Hospitalist Case-Mix

In the previous section, we derived analytical support
for our hypotheses in a special case where hospitalists
only round. In this section, we parameterize our model
with data from the 2005 California State Inpatient
Database (SID) and investigate the optimal ranking of
patients in the ideal hospitalist case-mix numerically
using the rounding and respondingmodel. In a numeri-
cal study using actual patient data from a wide variety
of patient types in a large data set, we confirm the
insights from our previous analysis in the rounding-
responding setting, and we expand upon them to
answer other questions that are difficult to address in
the analytical model. We previously analyzed patient
heterogeneity in one dimension (complexity or service
requirement), but what is the ideal case-mix when
patient types are heterogeneous in both dimensions
simultaneously? Are hospitalists most operationally
effective when they focus on patient types that are simi-
lar in both dimensions, or should they mix it up and
attend patients with a variety of complexities and serv-
ice requirements?
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7.1. Data Description
The SID data include inpatient discharges from 457
hospitals in California in 2005. Each record contains
demographic information and data about the patient’s
plan of care, including diagnosis-related group
(DRG), LOS, number of procedures (NPR), and day of
each procedure relative to admission day. We use
data for adult patients with medical conditions.
Medical and surgical patients are often physically
separated in the hospital and attended by different
physician groups; as a robustness check, we repeat an
analysis on adult surgical patients in Appendix B.2 in
the e-companion. We remove obstetrics patients, and
patients who died, left against medical advice, or had
LOS longer than 60 days (these are not representative
of the general adult patient population), resulting in
1,557,372 patient records. To ensure we have enough
data to fit our LOS model for each DRG, we limit our
analysis to the 45 most common DRGs. These com-
mon DRGs represent 20% of the 223 DRGs but
account for 70% of the patient visits. The final sample
includes 1,088,847 records. Table EC.10 in Appendix E
in the e-companion provides summary statistics of the
data by DRG.

7.2. Model Fitting and Validation
We consider each procedure as a touch-point when
the physician intervenes to begin the next phase of
care. Examples of procedures include biopsy and
x-ray. Hospitalists coordinate these procedures with
other care providers and take actions to respond to
the results. The time between procedures allows us to
apply the model of repeated physician-patient interac-
tions using our phase-type approach. Because the SID
records LOS and procedure times in terms of days, we
add random noise, uniformly distributed on [0, 1] to
LOS and procedure times so that the resulting time
data are continuous.2 We fit a Coxian phase-type dis-
tribution for each DRG by computing the expected
time spent in each phase and transition probabilities.
Since the SID data do not include the physician

information, we cannot impute what portion of the
time between two procedures are delays. We consider
the entire time to be the service requirement. Thus,
the estimated service rates are smaller than the actual
ones. This bias may affect the ranking of individual
DRGs in the optimal case-mix. However, since we are
interested in the characteristics that determine the
rankings, and not the ranking of individual DRGs,
this bias does not affect our main insights.

Table 2 reports the negative log likelihood (–LL)
(smaller is better) and the Akaike Information Crite-
rion (AIC) statistic (smaller is better) for the top 10
DRGs that enter the hospitalist case-mix (see Section
7.3) for our Coxian approach using the procedure
time and LOS data, and some other distributions that
are commonly used in the literature: Exponential,
Weibull, and Lognormal, using only the LOS data.
The Coxian approach provides the best fit for DRG
125 and 124, the second best fit for DRG 122, 174, and
395, and third best fit for the rest of them. Clearly, no
one distribution is best for every DRG, and neither is
our goal to determine the best fit for the data. The Cox-
ian phase-type distribution is the only model that
allows us to capture the dynamics of patients’ progress
and their repeated interactions with their providers.
Hence, our goal is only to show that the Coxian model
is a reasonable fit for the LOS data, and the overall
results support this contention.

7.3. Mixing It Up: Optimal Hospitalist Case-Mix
In this section, we test Hypotheses 1a and 1b using
the rounding-responding model of hospitalist-patient
interactions, and the 45 most common DRGs from the
SID data. Our goal is to understand the characteristics
that determine the ranking of different patient types
in the optimal case-mix. Recall that Hypotheses 1a
and 1b describe the hospitalist’s ideal case-mix while
holding the caseload constant. In Lemma 3, we
proved that, while holding the caseload constant,
patient types should be ranked in decreasing order of
nonhospitalist to hospitalist expected LOS in that

Table 2. Goodness of Fit Statistics for the Top 10 DRGs in Section 7

–Log-likelihood AIC

DRG Coxian Exponential Weibull Lognormal Coxian Exponential Weibull Lognormal

125 27,971 29,854 28,330 28,868 55,972 59,710 56,663 57,738
124 37,149 39,074 37,940 37,621 74,335 78,150 75,882 75,245
122 24,689 25,637 24,028 24,883 49,405 51,275 48,057 49,768
143 115,030 118,240 106,970 113,086 230,079 236,482 213,943 226,173
174 88,750 95,020 89,158 85,360 177,530 190,042 178,317 170,722
139 24,482 24,957 23,045 23,826 48,981 49,916 46,092 47,654
395 47,495 48,964 48,044 46,751 95,016 97,930 96,090 93,504
410 32,507 34,280 32,363 31,629 65,037 68,562 64,727 63,259
183 46,580 47,623 44,242 45,347 93,179 95,249 88,486 90,696
524 30,021 30,355 28,076 27,626 60,068 60,711 56,153 55,254
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caseload. To calculate the expected nonhospitalist and
hospitalist LOSs, we set ξ � 1 and γ � 24, which corre-
spond to a nonhospitalist visiting the hospital once a
day and a hospitalist spending 1/24th of the shift on
each patient encounter. Since visit rates are identical
across patient types, the choice of these parameters
does not affect the ranking of the patients in the case-
mix. For computational tractability, we approximate
each patient’s expected LOS using Approximation 1
and (8); that is, we replace µ in (8) by µ̄ for each
patient type, and we multiply (8) by the average num-
ber of phases. Throughout this section, the term
“optimal case-mix” refers to the optimal case-mix
when LOSs are approximated by Approximation 1.

Figure 6 shows the ratio of expected nonhospitalist
to hospitalist LOS at different caseloads between 1
and 24 patients for the top 12 DRGs in the optimal
case-mix. At r � 24, the ratio is equal to 1 for all DRGs.
In line with Proposition 1, we find that the optimal
ranking is independent of the caseload (the ratios do
not intersect when r < 24) and is in decreasing order
of the average service rates µ̄i. In Table 3, we report

the top 12 DRGs. We classify the service requirement
of each DRG as “short” if the average LOS is less than
four days, and “long” otherwise. We classify the com-
plexity of each DRG as “simple” if the average num-
ber of procedures (excluding discharge) is less than
one, and “complex” otherwise.

In Figure 7, we plot the top 25 DRGs that enter the
hospitalist case-mix by their average number of proce-
dures (complexity) and their average LOS. The label
next to each point indicates the DRG’s rank (with 1
being the best rank). The fourth quadrant contains
DRGs with both short LOS and a complex plan of
care. Hospitalist care is most operationally effective
for these DRGs, as it ensures that they are closely
monitored and that the transition between phases is
timely. However, there are not many DRGs that
require numerous procedures in a short amount of
time. The DRG that enters the hospitalist case-mix
after the fourth quadrant DRGs (rank 4) is DRG 143:
chest pain, which is a simple condition, having the
fifth smallest number of procedures. DRG 143 is
attractive because those patients have the shortest

Figure 6. Ratio of Expected Nonhospitalist to Hospitalist LOS at Different Caseloads
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Table 3. Summary Statistics of Top 12 Ranked DRGs in the Optimal Case-Mix

Rank Diagnosis-related group (DRG) Average LOS (days) Average NPR µ̄ Service Complexity

1 125: Circ. disorders except ami, w card cath w/o complex diag. 2.84 3.45 1.56 Short Complex
2 124: Circ. disorders except ami, w card cath & complex diag. 4.46 3.69 1.05 Long Complex
3 122: Circ. disorders w ami w/o major comp, discharged alive 3.16 1.61 0.82 Short Complex
4 143: Chest pain 2.12 0.52 0.71 Short Simple
5 174: G.I. hemorrhage w cc 4.48 2.15 0.70 Long Complex
6 139: Cardiac arrhythmia & conduction disorders w/o cc 2.41 0.43 0.59 Short Simple
7 395: Red blood cell disorder 4.24 1.44 0.57 Long Complex
8 410: Chemotherapy w/o acute leukemia as secondary diag. 4.33 1.48 0.57 Long Complex
9 183: Esoph., gast. & misc digest disorders age > 17 w/o cc 2.88 0.63 0.56 Short Simple
10 524: Transient ischemia 3.01 0.64 0.54 Short Simple
11 202: Cirrhosis & alcoholic hepatitis 6.00 2.06 0.51 Long Complex
12 449: Poisoning & toxic effects of drugs age > 17 w cc 3.72 0.89 0.51 Short Simple
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average LOS, approximately two days. These patients
experience long discharge delays if attended by a non-
hospitalist who rounds once a day. A hospitalist is
able to substantially reduce this delay. We observe
that criteria for ranking have shifted from the most
complex patients to the patients with the shortest
service requirement. The next best DRGs are either in
the second quadrant (long and complex) or the third
quadrant (short and simple). The first quadrant con-
tains DRGs with long average LOS and simple plan of
care, for which hospitalists are the least operationally
effective. The DRGs that are ranked 26th to 45th (not
shown in the graph) mostly fall in this quadrant.

Figure 7 supports the suggestions that, among con-
ditions with similar service requirement, hospitalists
are most operationally effective for complex ones
(Hypothesis 1a), and, among conditions with similar
complexity, hospitalists are most operationally effec-
tive for those with short service requirement (Hypoth-
esis 1b). When patients are heterogeneous in both
dimensions, hospitalist case-mix should include a mix
of patients with short-simple and long-complex condi-
tions, rather than focusing solely on one quadrant.
Attending some short-simple patients next to the
long-complex ones helps reduce congestion in the sys-
tem, which is an operational outcome that has not
been considered in the clinical literature.

8. Case Study: Examining Case-Mix,
Caseload, and Coverage at Two
Partner Hospitals

We return to the two case study hospitals described in
Section 2. By comparing the solution of our model

with the real hospitalist staffing practice at these hos-
pitals, we can study the cost-benefit trade-off of the
hospitalist model. We also compare the use of hospi-
talists in two different types of hospitals.

8.1. Case 1: Community Hospital
Community Hospital provided us with data for calen-
dar year 2017. Excluding obstetric and pediatric admis-
sions, there are 4,626 records representing patients with
195 different DRGs. The data include admission and
discharge dates, LOS, attending provider’s ID and spe-
cialty, primary care provider’s ID, and DRG. Unfortu-
nately, the data do not include the number and timing
of procedures. We use the average number of proce-
dures (NPRs) from the SID data to approximate the
average NPRs in this hospital. We adjust the NPRs pro-
portional to the average LOS for each DRG to maintain
the same number of procedures per unit time as the SID
data. Table 4 summarizes the data.

Community Hospital employs five hospitalists, with
three on duty on any given day. Each on-duty hospitalist
requires 1.7 full-time equivalents (FTEs). Community
Hospital had an average census of 59 patients. Each hos-
pitalist managed seven patients on average, including
both medical and surgical patients. Collectively, this
accounts for 35% of patients. Of the remaining patients,
20% were attended by PCPs and 45% by specialists.

To calibrate our model, for each DRG i, we estimate
µ̄i using the expression for the expected LOS when
attended by a nonhospitalist,

SiN � 1=ξ
1− e−µ̄ i=ξ

( )∑J
j�1

Pi
j:

Figure 7. Average LOS vs. Complexity of Top 25 DRGs and Their Ranking in the Optimal Case-Mix
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We use SiN from the data and solve this expression to
obtain

µ̄i � −ξ ln 1−
∑J

j�1Pi
j

ξSiN

( )
:

We then assess the quantitative predictive accuracy of
our model using the hospital’s census. In other words,
we compare the average census of the hospital from
the data with the one from our calibrated model. To
do so, we set n � 3 hospitalists and r � 7 patients
according to the current practice, with the case-mix
following that of the empirical data. Moreover, we set
γ � 24, which corresponds to a hospitalist spending
1/24th of the shift on each patient encounter. With a
typical 12-hour hospitalist shift, this corresponds to
visiting patients on half-hour intervals, which is con-
sistent with the literature and our interviews with
hospitalists. We conduct sensitivity analysis on the
visit interval in Appendix B.3 in the e-companion.
Recall that we only model the day shifts and assume
that patients do not generate requests overnight (see
Section 2). We tune the nonhospitalist visit rate ξ to
maximize the predictive accuracy of the model, that
is, to minimize the absolute difference between the
actual and predicted average hospital census. This is
achieved at ξ � 1:7 visits per day, which is reasonable
because many of the nonhospitalist patients were
attended by specialists, who often conduct rounds
more than once per day. To assess the predictive accu-
racy of the model, we then compare the average hos-
pitalist census of each DRG from the data with the
same measure from our calibrated model. We find
that, excluding DRGs with fewer than two hospitalist-
attended observations, the hospitalist census pre-
dicted by the calibrated model (rightmost column in

Table 4) falls within the 95% confidence interval for
the mean hospitalist census for 96% of the DRGs, indi-
cating that the model predicts the actual census well.

After calibrating the model, we analyze Community
Hospital’s census under the counterfactual setting
where the caseload and case-mix are determined
according to our model. We solve the model with
objective function (9), decision variables (ri), and the
demand constraints in Mathematica 11, using the
NMinimize function. Table 5 shows the top 10 ranked
DRGs according to the model and their characteristics.
The two rightmost columns report the proportion of
patients from each DRG that were actually attended
by hospitalists in the data and the proportion that
should be attended by hospitalists in the optimal solu-
tion at the current staffing level. Although our model
suggests that all the patients of these top 10 DRGs
should be attended by hospitalists at the current staff-
ing level, the majority of them were not actually
attended by hospitalists according to the second-to-
last column in Table 5. The DRGs that have parti-
cularly low hospitalist coverage have short LOS,
suggesting that hospitalists at Community Hospital
often attend complex patients (who tend to have long
LOS). Eschewing these shorter LOS patients repre-
sents a missed opportunity to better impact LOS via a
more varied case-mix.

Table 6 reports the current staffing policy, the model
output for each n in {0, 1, : : : , 7}, and the aggregate per-
cent of patients covered by hospitalists in the model
output. The optimal caseload typically ranges between
eight and nine patients, indicating that hospitalists may
currently be underloaded with a caseload of seven.
With the current n � 3, a slight increase in the caseload
of each hospitalist to 8.2 and using the optimal case-

Table 4. Most Common DRGs at Community Hospital: Summary Statistics and Model Outputs

All Nonhospitalists Hospitalists Model output

DRG
number Sample

Average
LOS

Average
census Sample

Average
LOS

Average
census Sample

Average
LOS

Average
census

Average
census (All)

Average
census (NH)

Average
census (H)

416 515 6.2 8.8 299 6.9 5.6 216 5.4 3.2 9.3 5.6 3.7
88 393 3.9 4.2 320 3.9 3.4 73 4.1 0.8 4.1 3.4 0.7
127 336 4.7 4.3 246 4.6 3.1 90 4.9 1.2 4.1 3.1 1.0
316 148 4.3 1.7 67 4.8 0.9 81 3.9 0.9 1.8 0.9 0.9
89 135 4.0 1.5 90 4.2 1.0 45 3.5 0.4 1.5 1.0 0.5
294 118 3.8 1.2 65 3.7 0.7 53 4.0 0.6 1.1 0.7 0.5
138 105 3.6 1.0 70 3.6 0.7 35 3.6 0.3 1.0 0.7 0.3
183 103 3.5 1.0 47 3.5 0.5 56 3.4 0.5 0.9 0.5 0.5
278 101 3.8 1.0 49 3.8 0.5 52 3.7 0.5 1.0 0.5 0.5
14 100 4.3 1.2 61 4.3 0.7 39 4.2 0.5 1.1 0.7 0.4
174 85 3.7 0.9 40 4.2 0.5 45 3.3 0.4 0.9 0.5 0.4
321 67 3.5 0.6 37 3.9 0.4 30 3.0 0.2 0.7 0.4 0.3
415 66 10.9 2.0 33 11.3 1.0 33 10.6 1.0 1.9 1.0 0.9
297 63 3.2 0.6 32 3.6 0.3 31 2.8 0.2 0.6 0.3 0.3
Total 2,335 4.7 30.1 1,456 4.8 19.3 879 4.5 10.8 30.1 19.3 10.8
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mix would result in a 3.1% reduction in hospital cen-
sus. Whether n � 3 is the right number of hospitalists
depends on how much money the hospital saves from
a reduced census. These savings can occur through rev-
enue increase by admitting new patients into the freed
space or cost reduction by reducing the unit size (e.g.,
number of beds and/or staff). We conduct a cost-
benefit analysis for each staffing level n based on an
average total annual compensation of $300,000 per FTE
(Today’s Hospitalist 2018) and the observed 1.7 FTEs
required per staffed hospitalist. To calculate the annual
benefits, we first calculate the cost savings or revenue
improvement associated with one day reduction in
LOS for one patient. We call this quantity the marginal
benefit per patient day (MBPPD). Based on the current
staffing policy at Community Hospital, we impute that
they save $1,766 per patient-day reduction. We then
multiply the marginal benefit per patient day by the
size of the census reduction associated with each staff-
ing policy and the number of days per year (365 days)
to get the annual benefits. In Figure 8, we compare the
annual marginal cost and benefit of a hospitalist as a
function of n for the imputed MBPPD of $1,766, along
with two other estimated values for the MBPPD from
the literature. Taheri et al. (2000) estimate the inpatient
cost during the last day of hospitalization to be $660 (in
2019 dollars). An alternative value is estimated by
the Kaiser Family Foundation (2016), which estimates
the hospital adjusted expenses per inpatient day to be
$2,435 (in 2019 dollars). At the low end of the range
suggested by the literature, no hospitalists should
be staffed; at the high end, six hospitalists should be
staffed. At the imputed MBPPD, the hospital should
staff five hospitalists each day instead of three if they
use the optimal case-mix. At this staffing level, 79% of
patients would be covered, an increase of 44 percentage
points over the current policy.

In the last column of Table 6, we report the annual
net savings compared with the current staffing policy
at the imputed MBPPD (we calculate the net benefits

of switching from the current policy to the policy rep-
resented in that row after subtracting the annual costs
from the annual benefits). By increasing the staffing
level to five hospitalists per day, and providing hospi-
talist care to the right number and mix of patients, we
estimate that the hospital can save $1.31 million annu-
ally. At the current staffing level of three hospitalists
per day, we estimate that the hospital can save $1.18
million by assigning the optimal case-mix and case-
load to each hospitalist. This highlights the impor-
tance of hospitalists’ caseload and case-mix design for
ensuring efficient hospital care delivery.

8.2. Case 2: Academic Hospital
Academic Hospital provided us with data containing
all adult nonobstetric hospitalist admissions in 2017.
In contrast to Community Hospital, this hospital has a
large patient volume and has dedicated hospitalists
for medical and surgical patients. Although hospitalists
who are dedicated to one type of patients may occa-
sionally end up attending patients from the other type
due to overflow or patient transfers, the hospital’s
primary goal is to keep the hospitalists dedicated to
medical or surgical floors. We analyze the group of hos-
pitalists who primarily see medical patients. For our
study, we only consider medical DRGs for these hospi-
talists, as the overflow patients are an exception and
should not be considered as part of the “ideal” case-mix
for medical hospitalists. This includes 7,865 admissions
from 182 medical DRGs. The data include admission
and discharge dates, LOS (average 6.4 days), attending
provider’s ID, DRG, and the total hospitalization cost.
Similar to the community hospital’s data, this data set
does not include the number and timing of procedures.
We use the SID data to approximate the average NPR
of each DRG while adjusting these numbers propor-
tional to the LOS. We analyze the 100 most common
medical DRGs, which make up 7,474 admissions (95%).
On average, n � 9 hospitalists attended 131 patients,
with an average caseload of r � 14.5 patients per

Table 5. Summary Statistics of Top 10 Ranked DRGs in the Optimal Case-Mix at Community Hospital

% attended by hospitalists

Rank Diagnosis-related group (DRG)
Average LOS

(days)
Average
NPR µ̄ Service Complexity In the data

In the optimal
solutiona

1 310: Transurethral procedures w mcc 3.8 2.7 1.50 Short Complex 30% 100%
2 217: Wnd debrid & skn grft exc hand … 11.2 5.1 1.46 Long Complex 50% 100%
3 122: Circulatory disorders except ami, … 2.8 1.7 1.39 Short Complex 16% 100%
4 175: G.I. hemorrhage w/o cc/mcc 2.7 1.7 1.38 Short Complex 20% 100%
5 208: Disorders of the biliary tract … 2.8 1.0 1.27 Short Simple 40% 100%
6 77: Periph/cranial nerve & other nerv … 5.4 3.4 1.24 Long Complex 50% 100%
7 143: Chest pain 1.9 0.6 1.23 Short Simple 26% 100%
8 209: Major joint replacement … 3.3 1.7 1.23 Short Complex 9% 100%
9 477: Nonextensive o.r. proc … 5.2 3.0 1.18 Long Complex 15% 100%
10 281: Trauma to the skin, subcut tiss … 3.1 1.6 1.18 Short Complex 36% 100%

aAt the current staffing level n � 3.
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hospitalist. The hospitalists worked seven-day-on-seven-
day-off schedules, which requires 2.0 FTEs per staffed
hospitalist.

For each DRG, we use the average LOS, the approxi-
mated average NPR, and r � 14.5, to numerically esti-
mate µ̄i using (8), minimizing the mean squared error.
Unfortunately, Academic Hospital’s data set did not
include nonhospitalists’ admissions, so we could not
assess the quantitative predictive accuracy of the
model. However, Academic Hospital’s data set
included the actual cost of each patient, from which we
can determine the cost per patient day. The actual aver-
age cost per patient day is $1,912 in the data. We
impute the nonhospitalist visit rate from the hospital-
ization cost data as follows. According to our inter-
views with the hospital’s practitioners, Academic Hos-
pital tends to work near capacity most of the time, and
an empty bed is immediately filled with a new admis-
sion. Therefore, a reduced LOS translates into additional

revenues. The hospital has maintained a 10% operat-
ing margin in recent years. As such, we estimate the
marginal benefit per patient day (MBPPD) to be
$2,125. For the current staffing policy (18 FTE hospi-
talists) to be financially feasible, the annual benefits of
18 FTE hospitalists should be at least as large as the
annual costs. Suppose that the average census in the
absence of hospitalists would have been Υ patients.
Then 18 × $300,000 ≤ (Υ− 131) × $2, 125 × 365→ 138 ≤ Υ.
Therefore, the census in absence of hospitalists should
be at least 138 patients. This corresponds to a nonhos-
pitalist visit rate of at most 1.6. We use 1.6 as the
imputed nonhospitalist visit rate and solve the model
for n � 0, 1, 2, : : : , 13 hospitalists. Table 7 reports the top
10 ranked DRGs in the optimal case-mix and their charac-
teristics, which again follow the “mixing it up” principle.

The optimal per-hospitalist caseload is around 10
patients (Table 8, column 3), which is approximately
4.5 patients fewer than the observed caseload. This
indicates that the hospitalists at the academic hospital
may be overloaded. The optimal solution would sub-
stantially reduce the portion of the shift spent on
rounds from 60% to 40%, because a lower caseload
allows hospitalists to spend more time in the more
efficient responding mode. Figure 9 shows the mar-
ginal cost and benefit of adding the last hospitalist in
different staffing levels for the MBPPDs reported in
the literature, and for MBPPD � $2,125, which we
computed from the hospital’s cost data and operating
margin, and the fact that the hospital is mostly
capacity-constrained. At the computed MBPPD of
$2,125, the optimal staffing level is 11 hospitalists, an
increase of two compared with the current policy. The
addition of hospitalists allows for lower hospitalist
caseloads and hence greater effectiveness in reducing
delays, without reducing coverage too much. With 11
hospitalists with optimized case-mix and caseload,
there will be an 84% hospitalist coverage in total

Table 6. Current and Optimal Staffing Policies at Community Hospital

n FTEs Caseload
Hospital
census

Improvement
in censusa

Hospitalist
coverageb

Annual net
savingc

Current policy
3 5.0 7.0 59.0 35%

Optimal policy
0 61.3 −3.9%
1 1.7 8.6 59.4 −0.7% 14% $0.77 million
2 3.3 8.4 58.1 1.5% 29% $1.05 million
3 5.0 8.2 57.2 3.1% 43% $1.18 million
4 6.7 8.6 56.2 4.7% 61% $1.27 million
5 8.3 8.8 55.4 6.1% 79% $1.31 million
6 10.0 8.4 54.7 7.3% 92% $1.27 million
7 11.7 7.3 54.2 8.1% 94% $1.12 million

aComparedwith the current hospital census.
b% of patients cared for by hospitalists.
cCompared with the current policy at the imputedMBPPD � $1,766.

Figure 8. Marginal Cost/Benefit Analysis for the Optimal
Staffing Level at Community Hospital
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(Table 8, column 6). The LOS reduction for the remain-
ing 16% of patients is simply not enough to offset
either the negative effects of increased caseload or the
cost of additional hospitalist(s). Increasing the staffing
level to 11 hospitalists per day, and providing hospi-
talist care for the right number and mix of patients can
lead to a 2.9% reduction in hospital census (Table 8,
column 5), which we estimate to create $1.72 million
saving annually (Table 8, column 7). Keeping the cur-
rent number of hospitalists and simply optimizing the
case-mix and volume results in a 1.7% reduction in
hospital census or a savings of $1.69 million, mainly
by reducing the current hospitalist caseload.

8.3. Comparison of the Optimal Policies at
Community and Academic Hospitals

The current hospitalist staffing policies at Community
and Academic Hospitals are quite different. This is
partly driven by qualitative differences in the demand
at the two hospitals. Community Hospital is a small

hospital with a low patient volume. Patients who visit
this hospital are less sick and stay for a shorter time
(average 3.6 days), which is common in community
and critical access hospitals, as sicker patients are
often transferred up to a higher-level care. Commun-
ity Hospital’s three hospitalists cover 35% of the
patients. On the other hand, Academic Hospital is
large and tends to work near its capacity most of the
time. Patients who visit Academic Hospital tend to be
sicker and stay longer (average 6.4 days). Hospitalists
cover almost all patients in the academic hospital.

8.3.1. Optimal Case-Mix. Hospitalists at Community
Hospital tend to attend a mix of medical and surgical
patients due to low patient volume. Hospitalists at
Academic Hospital are dedicated to medical or surgi-
cal patients. Regardless of this distinction, we find
that in both hospitals, the hospitalists should attend a
mix of patients with short-simple and long-complex
conditions. This would ensure fast treatment and

Table 7. Summary Statistics of Top 10 Ranked DRGs in the Optimal Case-Mix at Academic Hospital

Rank Diagnosis-related group (DRG) Avg LOS (days) Avg NPR µ̄ Service Complexity

1 175: G.I. hemorrhage w/o cc/mcc 3.1 1.8 1.15 Short Complex
2 122: Circulatory disorders except ami, … 5.7 3.4 0.91 Long Complex
3 66: Epistaxis w mcc 4.9 2.7 0.90 Long Complex
4 281: Trauma to the skin, subcut tiss … 4.9 2.5 0.86 Long Complex
5 324: Urinary stones w/o esw lithotripsy … 5.3 2.6 0.78 Long Complex
6 185: Dental & oral diseases w mcc 3.2 1.1 0.76 Short Complex
7 251: Fx, sprn, strn & disl except femur … 6.2 3.0 0.74 Long Complex
8 143: Chest pain 3.1 0.9 0.74 Short Simple
9 524: Transient ischemia 2.7 0.7 0.73 Short Simple
10 189: Other digestive system diagnoses … 4.2 1.7 0.72 Long Complex

Table 8. Current and Optimal Staffing Policies at Academic Hospital

n FTEs Caseload
Hospital
census

Improvement
in censusa

Hospitalist
coverageb

Annual net
savingc

Current policy
9 18 14.5 131 100%

Optimal policy
0 137.7
1 2 9.9 136.3 −4.0% 7% $0.73 million
2 4 9.9 135.1 −3.1% 15% $1.04 million
3 6 9.8 134.0 −2.3% 22% $1.26 million
4 8 9.6 133.1 −1.6% 29% $1.41 million
5 10 9.8 132.1 −0.8% 37% $1.52 million
6 12 9.6 131.3 −0.2% 45% $1.59 million
7 14 9.8 130.4 0.5% 53% $1.64 million
8 16 9.8 129.6 1.1% 61% $1.67 million
9 18 9.8 128.8 1.7% 69% $1.69 million
10 20 9.9 128.0 2.3% 77% $1.71 million
11 22 9.7 127.2 2.9% 84% $1.72 million
12 24 9.6 126.5 3.4% 91% $1.69 million
13 26 9.3 125.8 4.0% 96% $1.62 million

aComparedwith the current hospital census.
b% of patients cared for by hospitalists.
cCompared with the current policy at the computedMBPPD � $2,125.
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recovery progress for complex patients (Hypothesis
1a) and fast discharge for simple patients (Hypothesis
1b), thereby maximizing hospital throughput. At
Community Hospital, hospitalists would have a
mixed medical-surgical case-mix. At Academic Hospi-
tal, hospitalists on the medical floor should mix it up
within their dedicated patient groups.

8.3.2. Optimal Caseload. The optimal caseload is around
8.5 patients at Community Hospital and 10 patients
for hospitalists dedicated to medical patients at Aca-
demic Hospital. This is actually quite different—a dif-
ference of 1.5 patients translates to roughly 45 more
minutes spent on rounds. Given that patients at Aca-
demic Hospital tend to be sicker than patients at Com-
munity Hospitals, it could be counterintuitive that the
hospitalists at Academic Hospital should have higher
caseloads. However, we can understand this result by
observing that sicker patients tend to have longer
LOS. The average LOS of DRG 122 patients is 2.8 days
in Community Hospital and 5.7 days in Academic
Hospital. Longer LOS for the same DRG can mean
that a patient requires more recovery time, during
which they need a higher level of nursing care, but
not necessarily more interventions per day. Relatively
speaking, patients at Community Hospital recover
quickly and therefore need interventions (including
discharges) at greater frequency. A lower hospitalist
caseload allows hospitalists to spend more time in
responding mode and ensures that discharges are
processed in a timely fashion.

We also observe an interaction between case-mix and
volume. Because Community Hospital has lower patient
volume, hospitalists attend both medical and surgical
patients; the latter require more interventions per day. In
turn, the different mix of patients in Community Hospital

means that average phase lengths are shorter, and
hence a lower caseload allows those hospitalists to be
more operationally effective (Hypotheses 2 and 3). In
contrast, hospitalists at Academic Hospital are highly
overloaded.

8.3.3. Optimal Staffing Level. The optimal staffing
level depends on the magnitude of LOS reduction and
its financial value to the hospital. We imputed similar
nonhospitalist visit rates in the two hospitals. If hospi-
talists had similar caseloads in the two hospitals, then
LOS reduction for a given patient would be similar
regardless of hospital. However, neither the patients’
characteristics nor the hospitalists’ optimal caseload
are similar in the two hospitals. In our case study, hos-
pitalist care leads to larger LOS reductions at Com-
munity Hospital because of shorter average phase
lengths and lower caseload. On the other hand, LOS
reduction has more financial value at Academic Hos-
pital, which is mostly capacity-constrained, compared
with Community Hospital, which is mostly demand-
constrained. Taking all these factors into account, we
find that Community Hospital should provide hospi-
talist coverage for 79% of patients, and Academic
Hospital should provide hospitalist coverage for 84%
of its medical patients. We suggest that both hospitals
are understaffed, but for different reasons. Commun-
ity Hospital should increase their staffing so that they
can increase hospitalist coverage to more patients.
Academic Hospital should increase staffing to lower
each hospitalist’s caseload. Although this reduces the
total hospitalist coverage, it leads to a lower hospital
census by making hospitalists more responsive to the
patient types that are more prone to delays.

9. Limitations and Future Research
Like all studies that rely on analytical models and sec-
ondary data sources, our study has some limitations.
For analytical tractability, we assumed that the time
allocated to each patient for visiting and coordinating
care is independent of the hospitalist’s caseload and
the patient’s conditions. The first part is supported by
Tipping et al. (2010), who report the results of a time-
motion study showing that caseload did not change
the amount of time hospitalists spent with each
patient. The second part implies that a patient’s LOS
reduction from being attended by a hospitalist is only
affected by the number of patients in his or her hospi-
talist’s caseload. Future studies can explore how the
time spent per patient varies across patient types, and
incorporate that into the caseload and case-mix
design. We also assumed that hospitalists alternate
between rounding and responding service modes,
which is in line with our observations of and inter-
views with practicing hospitalists in the United States.

Figure 9. Marginal Cost/Benefit Analysis for the Optimal
Staffing Level at Academic Hospital
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If hospitalists can respond in the middle of rounds,
then hospitalist care will be more valuable than our
study suggests. Future studies can investigate these
nuances in hospitalist workflow and their impacts on
the caseload and case-mix.

In this study, we only considered the impact of
hospitalist caseload and case-mix on LOS, which is an
outcome important to hospital management from an
operations perspective. However, there are other
aspects of a hospitalist’s job such as noncare obligations
(e.g., teaching) that may impact their interactions with
patients, and the hospitalist model of care may affect
outcomes other than LOS. For example, a hospitalist
may enhance communications, and in turn improve
nurse and patient satisfaction (Pressel et al. 2008, Fulton
et al. 2011). This may have long-term financial implica-
tions for hospitals. If this is the case, then we may have
underestimated the financial benefit of the hospitalist
model in our case studies. Future studies can consider
other aspects of hospitalists’ work, and hospitalists’
effect on nonoperational outcomes.

This study provides the first analytical results
regarding the ideal caseload and case-mix for hospital-
ists. As an initial exploration of operations manage-
ment in this domain, we scoped the work solely as a
tactical study of caseload and case-mix. Another
important area of research lies in the operational deci-
sions of how to dynamically assign randomly arriving
patients to hospitalists. Although our work provides
guidance regarding what case-mix and caseload to
target, it does not address the question of how to
achieve those targets. Future studies should investigate
implementable policies that drive toward the target
caseload and case-mix while accounting for the stochas-
ticity and complexities in daily hospital operations.

10. Conclusion
Despite the growth of the hospitalist specialty, most
academic studies of the hospitalist model have ana-
lyzed patient-oriented rather than system-oriented
outcomes. To the best of our knowledge, we are the
first to study hospitalist caseload and case-mix from
an operational perspective. Our results partly comport
with the generally held belief among clinicians that
hospitalists are medically most effective when attend-
ing patients with complicated conditions. Such patients
tend to have long service requirements. However, we
show that for maximum operational effectiveness, hos-
pitalists should also attend some patients that are
operationally simple and have short service require-
ments to reduce discharge delays (a benefit not cur-
rently considered in the clinical literature). We find that
hospitalist optimal caseload mostly depends on the fre-
quency by which patients need interventions. This
means that a hospitalist who cares for complex and

long-stay patients may need to have a larger caseload
than a hospitalist who cares for simple and short-stay
patients. Combining these operational and clinical per-
spectives is key to maximizing the benefit of this grow-
ing medical specialty on hospital operations, while
maintaining a high standard of care.

We conducted a case study of a small community
hospital and a large academic hospital. The current
practice used at each hospital is far from optimal.
Community Hospital needs to staff more hospitalists
to increase the proportion of patients covered. Small
hospitals such as this one may find it difficult to jus-
tify having hospitalists for their patients, who are less
sick than the typical patients seen at academic hospi-
tals, for two reasons: they may underestimate the ben-
efits of hospitalists in speeding up discharges, or they
have not seen these benefits from their current hospital-
ists because of their suboptimal caseload and case-
mix. On the other hand, Academic Hospital needs to
staff more hospitalists but substantially lower its hos-
pitalists’ caseload, despite the fact that this reduces the
proportion of patients covered. Academic medical
centers with sicker patients such as this one may intui-
tively feel that all patients should be attended by a
hospitalist. However, some patient types may not
need many interventions and therefore could be
attended by a nonhospitalist provider. Including these
patients in hospitalists’ caseloads limits their respon-
siveness. In our case study, we made another counter-
intuitive observation: the optimal hospitalist caseload
at Community Hospital (where patients are less sick
overall) is smaller than that of Academic Hospital.
This is partly because of Community Hospital’s
patients’ characteristics (shorter LOS and higher turn-
over), and partly because of its lower patient volume,
which necessitates its hospitalists to have a mixed
medical-surgical case-mix. Although these insights are
from a case study of two specific hospitals, many hos-
pitals in the United States have similar characteristics
to one of these hospitals and hence can benefit from
understanding the results.
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Endnotes
1 Our definition of case-mix should not be confused with case-mix
index, which is a clinical term assigned to each diagnosis-related
group to reflect the allocation of resources for treatment of patients
in that group.
2 In Appendix C.1 in the e-companion, we use a sample of detailed
time-stamp data for hospitalist orders from a partner hospital and
show that the time between consecutive hospitalist orders are expo-
nentially distributed. This supports that our results in this section
are not an artifact of adding a random noise to the procedure dates.
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